So s is are-length, by
$$c^2 = a^2 + b^2$$
.

b) Since we are using are length param, $T(s) = \alpha'(s)$ above and $|e(s)| = |\alpha''(s)|$.

$$|e(s)| = |\alpha''(s)|$$

$$|e(s)| = |\alpha^2| \cos \frac{\pi}{c^2} \cos \frac{\pi}{c^2} \sin \frac{\pi}{c} = 0$$

$$|e(s)| = |\alpha''(s)| = |\alpha^2| \cos \frac{\pi}{c^2} \cos \frac{\pi}{c} = |\alpha^2| \cos \frac{\pi}{c} = 0$$

$$|e(s)| = |\alpha''(s)| = |\alpha''(s)| = (-\cos \frac{\pi}{c}, -\sin \frac{\pi}{c}, 0)$$

 $\Rightarrow |\alpha'(s)| = \sqrt{\frac{a^2}{c^2}} \sin^2 \frac{s}{c} + \frac{a^2}{c^2} \cos^2 \frac{s}{c} + \frac{b^2}{c^2} = \sqrt{\frac{a^2}{c^2} + \frac{b^2}{c^2}} = 1$

 $\int Q = \left(-\frac{Q}{c} \sin \frac{z}{c}, \frac{Q}{c} \cos \frac{z}{c}, \frac{B}{c}\right)$

 $N'(s) = \left(\frac{1}{c}sm\frac{s}{c}, -\frac{1}{c}cos\frac{s}{c}, 0\right)$

$$\mathcal{Z} = -\langle N', B \rangle = \det \begin{bmatrix} -\frac{a}{c} \sin \frac{b}{c} & \frac{b}{c} \cos \frac{b}{c} \\ -\cos \frac{c}{c} & -\sin \frac{b}{c} \\ -\cos \frac{c}{c} & -\frac{c}{c} \cos \frac{c}{c} \end{bmatrix} = \frac{b}{c^2}$$

$$So k(s) = \frac{a}{c^2}, \quad Z(s) = \frac{b}{c^2}$$

2 65 2

So
$$k(s) = \frac{Q}{Q}, Z(s) = \frac{1}{2}$$

c) $\omega s \theta = \frac{\langle \alpha'(s), (0,0,1) \rangle}{|\alpha'(s)||1|} = \frac{(-\frac{2}{6} s \dot{m} \frac{s}{2}, \frac{1}{6} \omega s \frac{s}{6}, \frac{1}{6}) \cdot (0,0,1)}{|\alpha'(s)||1|}$

= & = const. =) O is constant

 $\beta = (a ess \frac{s}{c}, a sin \frac{s}{c}, b \frac{s}{c})$ is a circular helix, a,b>0, $a^2+b^2=c^2$, then β has curvature $k_{\beta} = \frac{b}{c^2}$, torsion $T_{\beta} = \frac{b}{c^2}$ On the other hand, given K, 2 constant, K>0,2+0, let β be a circular helix pourmeterized as above with a, b st $K = \frac{a}{a^2 + b^2}$, $L = \frac{b}{a^2 + b^2}$. Solving for a, b explicitly, we see that setting $a = \frac{K}{K^2 + 2^2}$ $b = \frac{2^2}{K^2 + 2^2}$ means & will have curvature B, torsion Z. ben by the furdamental theorem of local theory of curves, Since &, B have the same curvature and torsion, a and a differ only by a rigid motion, which meens a must be a circular helix.

2) By Q1, we know that if

N" - -K'T - KT' + 2'B+2B' =-K'T-K2N+T'B+&(-&N) = -K7+27B-K2N-22N $= -\left(K_2 + 7^2 \right) N.$ We recognize the solutions of this ODE as N(s) = usings + v cosysfor 12=K2+22, some fixed u, ve R3 Note N(0) = V, and since IN(s)[=1, this implies |V]=1, ie. v is a unit vector. also, différentiating me here N'(s)| = (rucosrs - rusmrs)| = 0 = ru OTOH, we kind N'(0) = -KT(0) + & B(0) => M = -KT(0) + & B(0) So r2/42= |-157(0) +215(0)|2 = K2/16081-2KZ<I(+), 8(3) + 22/18(0)21 = $K^2 + 2^2$ => $|u|^2 = 1$. So u is also aunit vector.

a pareun. For a violant using Fundamental am of ennes.

By N'=XT+ZB, we have

$$\alpha'(s) = \frac{1}{\Gamma}u\cos rs + \frac{1}{\Gamma}v\sin rs + w$$
 for some well?
Tutograting engin quies
$$\alpha(s) = \frac{1}{\Gamma^2}u\sin rs - \frac{1}{\Gamma^2}v\cos rs + us + so \text{ for some soe } \mathbb{R}^2$$
Determine $w: \langle T, N \rangle = 0$ implies
$$0 < \frac{1}{\Gamma}u\cos rs + \frac{1}{\Gamma}v\sin rs + w, u\cos rs + v\sin rs \rangle$$

$$\Rightarrow \langle w, u\cos rs + v\sin rs \rangle = 0 \Rightarrow w \perp span \{u,v\}.$$
Also, by $|T|^2 = 1$, we have thest
$$1 = \frac{1}{\Gamma^2}us^2rs + \frac{1}{\Gamma^2}sin^2rs + |u|^2 = \frac{1}{\Gamma^2} + |u|^2$$

$$\Rightarrow |u|^2 = \frac{2^2}{\Gamma^2} \Rightarrow |u| = \frac{|T|}{\Gamma}$$

So finally me know that $\{-\mu, -\nu, \omega_{17}\}$ is an

JULESMITS + 2 smits costs (N, V) + JULE COSTS =

=) 25m (5 cos (5 < u, v) 0 =) < u, v) =0.

a"(s)= T(s)= Kusimrs + Kvcosrs.

Next, we can use T'=KN, and wrote the ODE

also, $|N|^2 = 1$ implies

So integrating once gives

orthonormal frame. Then often an orthonormal transformation taking this frame to the standard {e, ez, ez}, we get king this frame w $\alpha(s) = \left(\frac{K}{r^2} \sin r s, \frac{K}{r^2} \cos r s, \frac{|\tau|}{r} s\right) + S_0$ slowly see that this by a point and we can clearly see that this is the parametrization of a circular helix.

3) WLOGI, eautable t to be arc-length paran. of y. Since at t=to, |y(t)| is at Iscal Man, we have $\frac{dt}{dt^2} |\gamma(t)| \leq 0.$ LHS = $\frac{d^2}{dt^2}\Big|_{t=to} \gamma(t) \cdot \gamma(t) = \frac{d}{dt}\Big|_{t=o} 2\gamma(t) \cdot \gamma(t)$

= 27"(t).7(t) | t=to + 2 | 7'(t) | t=to = 1 by arc-length param. => |≤|7"(to)-7(to)|

= |7"(to)| = |k(to)|.

Cauchy So we have $|k(t_0)| = |p''(t_0)| = |k(t_0)|$.

4) a) Remoting in contassion coordinates, we have
$$\alpha(\theta) = (\rho(\theta) \cos \theta, \rho(\theta) \sin \theta), \quad \alpha \le \theta \le b.$$
Then are length is quien by
$$\int_{\alpha}^{b} |\alpha'(\theta)| d\theta.$$

$$\alpha'(\theta) = (\rho'(\theta)) \cos \theta - \rho(\theta) \sin \theta, \quad \rho'(\theta) \sin \theta + \rho(\theta) \cos \theta).$$

$$|\alpha'(\theta)|^{2} = (\rho'(\theta))^{2} \cos^{2}\theta - 2\rho'(\theta)\rho(\theta) \cos \theta \sin \theta + \rho^{2}(\theta) \sin^{2}\theta + 2\rho'(\theta)\rho(\theta) \cos \theta \sin \theta + \rho^{2}(\theta) \cos^{2}\theta + (\rho'(\theta))^{2} \sin^{2}\theta + 2\rho'(\theta)\rho(\theta) \cos \theta \sin \theta + \rho^{2}(\theta) \cos^{2}\theta = (\rho'(\theta))^{2} + \rho^{2}(\theta)$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^{2}} d\theta.$$

$$\Rightarrow \text{ are length } = \int_{\alpha}^{b} \frac{1}{\rho^{2} + (\rho')^$$

=
$$((p'\cos\theta - p\sin\theta)(p''\sin\theta + 2p'\cos\theta - p\sin\theta))$$

 $-(p'\sin\theta + p\cos\theta)(p''\cos\theta - 2p'\sin\theta - p\cos\theta))$
 $=(p'p''\cos\theta\sin\theta + 2p''\cos\theta - pp'\cos\theta\sin\theta - pp''\sin^2\theta)$

$$-296 \cos \theta + \cos \theta +$$

$$= (2(p')^2 - pp'' + p^2) \hat{k}$$

$$= (2(p')^2 - pp'' + p^2) \hat{k}$$

$$= (2(p')^2 - pp'' + p^2) \hat{k}$$

$$= |\alpha'(\theta) \times \alpha''(\theta)| = 2(\rho')^2 - \rho \rho'' + \rho^2$$

$$\Rightarrow k(\theta) = \frac{2(\rho')^2 - \rho \rho'' + \rho^2}{((\rho')^2 + \rho^2)^{3/2}}$$

WLDG, param & by arc-llugh s. and let the fixed point x = 0. Then the normal lines of a at 5 are α given by $\beta_s(t) = \alpha(s) + tN(s)$. We have their for all s, I t(s) s. c. $\beta_s(t) = 0$ Then differentiating both sides in s 0= \$\frac{1}{26} \beta_5(t) = \$\frac{1}{26} (\chi(6) + \tau(6)) $= T(s) + t'(s)N(s) + t(s)(-k(s)T(s) + \tau(s)R(s)$ = (1-t(s)k(s))T(s)+t(s)N(s)+t(s)T(s)B(s). Since &T(s), N(s), B(s) & is a basis, equating components, we get t(s) = 0 =) t(s) = const. We can rule out t(s) = 0 since then $p_s(t) = \alpha(s)$ and analition will mply $\alpha(s)$ is a fixed point. So WOG, take t70 const. =) 0=tZ(s) => Z=0. so x is contained in a plane. Since redus of 1-tk(s) = 0 =) 1= curvature is constant, and $\alpha(T)$ is in a plane, radius of O(Z) is entaced in a circle

Since NIT.

$$\Rightarrow \langle \alpha(s), \alpha'(s) \rangle = 0 \Rightarrow \text{ if } |\alpha(s)| = 0.$$

$$\Rightarrow |\alpha(s)| = \text{const. is. } \alpha(T) \text{ lies on a sphere.}$$
Remaints show $T = 0$ (multich case $\alpha(T)$ is on a plane Ω sphere $\alpha(T)$ is on a plane Ω .

Conditionalso means $N(s)$ ($|\alpha(s)|$, so $|\alpha(s)| = 0$).

So of $B(s) = \text{dist}(s) \times N(s) = T(s) \times N(s) + T(s) \times N(s)$

$$= 0 \qquad (T'|N) \qquad N'|T \qquad \Rightarrow N' = \lambda T \text{ for some } \lambda.$$

$$\Rightarrow T(s) = 0.$$

Hence $\alpha(T)$ lies in a plane. So $\alpha(T)$ is contained in a circle.

Obtainatively, condition $\beta_s(t) = 0$ means at t, $0 = \langle \beta_s(t), \alpha'(s) \rangle = \langle \alpha(s), \alpha'(s) \rangle$

+ t < N(s), Q(s))